
Binary-Level Lightweight Data Integration to Develop
Program Understanding Tools for Embedded Software in C

Katsuhiko Gondow
Tokyo Institute of Technology
2-12-1 Oookayama Meguro
Tokyo 152-8552, JAPAN
gondow@cs.titech.ac.jp

Tomoya Suzuki
Elmic Systems, Inc.

4-59 Bentendori Naka
Yokohama 231-0007, JAPAN

t-suzuki@elmic.co.jp

Hayato Kawashima
Japan Advanced Institute

of Science and Technology
1-1 Asahidai Tatsunokuchi
Ishikawa 923-1292, JAPAN

hayato-k@jaist.ac.jp

Abstract

In embedded software development, the programming
language C and inline assembly code are traditionally
widely used. However, tools for C program-understanding,
e.g., cross-referencers or call graph extractors, are not ma-
ture still today.

In this paper, we introduce a novel technique for devel-
oping program-understanding tools, based on binary-level
lightweight data integration. To verify this idea, we first pro-
pose a new markup language for DWARF2 debugging in-
formation, and then, using the technique, we experimen-
tally developed two cross-referencers (calleddxref and
rxref) and a call graph extractor (calledbscg) for C.
Our preliminary evaluation shows that the technique en-
abled us to efficiently develop practical and flexible tools.

1. Introduction

In embedded software development, the program-
ming language C and inline assembly code are tradition-
ally widely used, because C code can directly observe
and/or control hardware devices through inline assem-
bly code and pointer operations, and also because C code
with inline assembly code is far more portable, produc-
tive and maintainable than the code entirely written in
assembly code, while not sacrificing too much execu-
tion speed nor memory consumption.

The spirit of C [26] like “Trust the programmer” and
“Do not prevent the programmer from doing what needs
to be done” not only provides great freedom and flexibil-
ity to C programmers, but also provides a great risk of writ-
ing dangerous code like buffer overrun. Many tools, e.g.
Electric Fence, libsafe [3] and SoftwarePot [18], have al-
ready been studied to protect the system from such danger-
ous programs, and many successes have been made in in-
dividual areas, but none of them are almighty for all possi-
ble vulnerabilities in C. Thus, CASE tools for C language
still play an important role to maintain bugs in C programs.

One of the most important CASE tools is program un-
derstanding tools [28] designed to help programmers un-
derstand software during maintenance. Unfortunately, tools
for C program-understanding, e.g., cross-referencers or call
graph extractors, are not mature still today. For example, an
empirical study [8] reported that call graphs extracted by
several broadly distributed tools vary significantly enough
to surprise many experienced software engineers. The situ-
ation is unchanged still today.

Generally speaking, the cost of developing CASE tools
including program-understanding tools is very high, since
CASE tools tend to have individual parsers and analyzers
even if they can be shared among CASE tools, and also
CASE tools tend not to export their analyzed internal data.
For example, GCC internally has much information about
syntax structure and static semantics of the program being
compiled, but there is no simple way to extract it from GCC.

To allow CASE tools to flexibly cooperate and exchange
their internal data, tool integration became a key issue. One
of the five integrations stated in [32] isdata integration,
which refers to data sharing among tools and change man-
agement among them. We call this data integrationheavy-
weight, since it requires special databases, e.g., PCTE [22]’s
object management system, and fully uniform common for-
mats, e.g., CDIF [7], that works well for the whole bunch of
CASE tools including both upper and lower ones.

As XML [30] emerges as the standard format for Web
documents, data integrations using XML, e.g., JavaML [9],
GCC-XML [4], Sapid [14, 13], ACML [17, 12] are stud-
ied. We call themlightweight, since they defined common
formats that work quite well among strongly related, but a
small number of tools. The success of a metrics tool [11]
using JavaML supports the lightweight approach. There are
many advantages to use XML for data integration:

• XML documents are highly readable, portable and
interoperable due to plain-text format and self-
descriptiveness.

• XML is powerful enough to describe complex struc-
tures and their relations. Using DTD or XML schema,

we can define and check the structure of XML doc-
uments. Also, XML is flexible enough to cope with
semi-structured documents (e.g., syntax errors).

• XML documents are easy to query, display and modify
thanks to rich standard XML technologies, e.g., XML
parsers, DOM, SAX and XPath.

Thus, data integration using XML greatly cuts the de-
velopment cost; e.g., [17, 12] show a program slicer and a
cross-referencer are developed only in 2 man-weeks each.

We say JavaML, GCC-XML, Sapid and ACML are
source-leveldata integration, since they are all common for-
mats for source code and the results of static analysis. Un-
fortunately, when it comes to C language, source-level data
integration is very hard because of compiler-specific ex-
tensions and ambiguous behaviors in the C standards (see
Section 2.1 for details).

To solve this problem of source-level data integration,
we propose abinary-leveldata integration, which provides
common formats by extracting information from binary
code, not from source code. Binary-level data integration
has many advantages. For example, compiler-specific ex-
tensions and the C standards’ ambiguous behaviors do not
matter in binary-level approach (see Section 3). As far as we
know, little attention has been given to binary-level data in-
tegration for CASE tools, so it is worth studying.

The purpose of this paper is to show how binary-level
lightweight data integration affects the development of
CASE tools. As a testbed for this approach, we first de-
fine DWARF2-XML as a common format using XML
for DWARF2 debugging information. Debugging infor-
mation such as DWARF2 is a kind of binary information
describing local variables, user-defined types, line num-
bers, lexical scopes, stack frames, and so on (see Section 2.3
for details). Of course, debugging information is primar-
ily designed for debuggers, but we observe that it is quite
attractive even for CASE tools.

Second, using DWARF2-XML, we experimentally de-
velop two cross-referencers (calleddxref and rxref)
and a call graph extractor (calledbscg) as typical program-
understanding tools. In the experiment, we had a good re-
sult; it took only 1 through 2 man-weeks to implement
each tool. Our tools are almost practical both in execution
speed and in functionality; especially they have less false-
positives than the existing tools. The toolrxref is a hy-
brid of dxref and GNU GLOBAL [29], and the success of
rxref shows that our approach has good flexibility.

This paper is organized as follows. Section 2 re-
views some background on C language, taxonomy of
cross-referencers, DWARF2 debugging information. Sec-
tion 3 discusses the (dis)advantages of binary-level data
integration. Section 4 introduces DWARF2-XML. Sec-
tion 5 describes experimental implementation of tools using
DWARF2-XML. Section 6 describes related works. Fi-
nally, Section 7 gives conclusion and future works.

2. Background

2.1. Why source-level data integration is hard in C

As mentioned Section 1, source-level data integration is
difficult because of compiler-specific extensions and am-
biguous behaviors in the C standards.

First, source-level tools need to cope with compiler-
specific extensions, but it is difficult. Most C programs, es-
pecially for embedded software, use compiler-specific
extensions like GCC’sasm for inline assembly or
__attribute__ for adjusting alignment, interposition-
ing, etc. Even system header files like<stdio.h> use
such extensions, a simple ‘Hello, world’ program may have
compiler-specific extentions. This implies tools only for
ISO- and ANSI-C standard [23, 24, 25] conforming pro-
grams can be useless for embedded software.

Second, source-level tools need to precisely imi-
tate the ambiguous behaviors defined by the C com-
piler being used, but it is quite difficult. Some parts of
the C standards are intentionally left ambiguous, cat-
egorized into implementation-defined, unspecified and
undefined. For example, whether a host byte order is
big-endian or little-endian (or else) depends on the plat-
form, which is an implementation-defined behavior. If
possible, it is preferable not to use such ambiguous be-
haviors, since they make programs less portable, but
sometimes we must use them. For example, when we im-
plementhtonl , which converts along value from host
byte order to network byte order, we probably can do noth-
ing but write code depending on the host byte order.

Actually, most C programs depend on such ambiguous
behaviors. Tools need to precisely imitate the ambiguous
behaviors to obtain the analysis results consistent to the
compiler behavior. But it is quite difficult since unspecified
and undefined behaviors are not required to be documented,
so we have to read the compiler source code to know such
behaviors. Low-level information like byte ordering is cru-
cial in developing embedded software, so tools for embed-
ded software have to consider this problem.

2.2. Taxonomy of cross-referencers

Generally, cross-referencers provide a means for relat-
ing the use of a name to its definition, and vice versa. This
section gives taxonomy of cross-referencers, including our
dxref andrxref , to show that the implementation meth-
ods of tools greatly affect their characteristics like the quan-
tities of false-positives and false-negatives, execution speed,
scalability, applicability, and the development cost.

We classifies implementation methods of cross-
referencers into the following five methods.

1. source-level partial parsing
2. source-level full parsing
3. binary-level symbol tables
4. binary-level debugging information (dxref)

5. hybrid of 1 and 4 (rxref)

The first three are the existing methods, and the last
two are our new methods. Most existing cross-referencers,
e.g., GNU GLOBAL [29], cxref [1], LXR [19], cscope [6],
use thesource-level partial parsing method, which extracts
symbols and their relations from source code by string pat-
tern matching or partial parsing. While this method can pro-
cess huge source code very fast, it cannot understand scopes
or name spaces. For example, GNU GLOBAL cannot iden-
tify two symbols with the same name in the different name
spaces (e.g., variablefoo and labelfoo). Also, the fol-
lowing code fragment is legal, but Cxref emits a parse error
confusingtypedef namefoo and labelfoo . Thus this
method is very fast, but less informative or incomplete.

typedef int foo; /* typedef name */
foo: goto foo; /* label */

At first glance, thesource-level full parsing method(e.g.,
Sapid and ACML), by which tools fully parse source pro-
grams at the same level as compilers, seems to solve the
above problem. The answer is yes but very expensive to de-
velop because of the problems described in Section 2.1, al-
though it has few false-positives and few false-negatives.
Actually, to avoid high development costs, Sapid and
ACML ignore these problems, which results in less appli-
cability. Section 5.2 shows two examples of source code
that Sapid and ACML cannot process.

Thebinary-level symbol table methodtakes another ap-
proach; it extracts symbols and their relations from sym-
bol tables and line number tables in executables. We think
Visual Studio .Net uses this method, which is, however,
not confirmed yet. This method is lightweight, low devel-
opment cost, few false-positives, but less informative (i.e.,
many false-negatives and few true-positives). Symbols are
likely to be restricted to global variables and functions. Ac-
tually, Visual Studio .Net cannot deals with local variables,
tag names,typedef names, label names, and so forth.

This observation led us to proposebinary-level debug-
ging information method, by which binary symbol informa-
tion is complemented by debugging information. As will be
shown in Section 5.2,dxref cannot handle references in
expressions and statements while it has several good char-
acteristics. Thus,hybrid method, which uses both methods
of binary-level debugging information and source-level par-
tial parsing, is introduced in Section 5.2.

2.3. DWARF debugging information

DWARF Debugging Information Format Specifica-
tion, Version 2.0 [31] (DWARF2 for short) is a binary for-
mat for debugging information, and widely supported by
major compilers (e.g., GCC) and debuggers (e.g., GDB).
DWARF2’s primary target languages are C, C++, FOR-
TRAN, Modula2 and Pascal. Debugging information
in DWARF2 format includes, for example, source lan-
guage types (including user-defined ones), nested blocks,

DW_TAG_compile_unit

DW_AT_name "hello.c"
DW_AT_producer "GNU C 3.0.2"

DW_TAG_base_type
DW_AT_name "int"
DW_AT_byte_size 4
DW_AT_encoding signed

DW_TAG_subprogram

DW_AT_name "main"
DW_AT_external 1
DW_AT_type
DW_AT_frame_base

DW_OP_reg30

DW_TAG_lexical_block

DW_AT_low_pc 67328
DW_AT_high_pc 67356

DW_TAG_variable

DW_AT_name "i"
DW_AT_type
DW_AT_location

DW_OP_fbreg:-24

int main () {
 int i;
 ...
}

hello.c

entry

entry tag attribute names attribute values

links
tree structure of entries
in .debug_info
source code

Figure 1. Example of tree structures in
.debug _info

line numbers, function and object names (including lo-
cal ones), their addresses on the machine, their accessi-
bility (like public and protected), how to unwind
a stack frame, and so on. All these information is en-
coded in highly compressed form, and stored in several
sections whose names are of the form.debug_* .

DWARF2 defines the following 9 debug sections:

.debug_info , .debug_abbrev , .debug_frame ,

.debug_line , .debug_str .debug_pubnames ,

.debug_aranges , .debug_loc , .debug_macinfo ,

The section.debug_info is the most important. It
logically describes tree-structured entries. Each entry con-
sists of anentry tagand a series ofattributes. DWARF2 de-
fines 47 entry tag names and 59 attribute names.

Figure 1 shows an example of entry tree structures
in .debug_info , where an entry for compilation unit
hello.c has two subentries for a typeint and a func-
tion main , and the entry formain has a subentry for a
block, which has a subentry for a local variablei . Each en-
try has 0 or more attributes. For example, the entry with
the tagDW_TAG_compile_unit in Figure 1 has two at-
tributes DW_AT_nameand DW_AT_producer , whose
values are"hello.c" and "GNU C 3.0.2" , respec-
tively. Some attributes likeDW_AT_type are links to other
entries, which contributes to size reduction.

To embed DWARF2 debugging information in the exe-
cutable file (a.out), you can compile source code using
gcc with the option-g3 -gdwarf-2 .

% gcc -g3 -gdwarf-2 hello.c

Note that the compiler produces DWARF2 de-
bugging information and embed it intoa.out , so
the problems mentioned in Section 2.1 hardly arise
here. For example, the value of DWARF2 attribute

DW_AT_data_member_location represents the off-
set of a structure member. The offset is an implementation-
defined behavior, but, with very high probability, the off-
set in DWARF2 is the same value as that in machine
code, since both values are generated by the same com-
piler.

One characteristic of DWARF2 is that DWARF2 entries
are loosely structured in the sense that:

• Vendor-specific tags and attributes are allowed
in DWARF2. The values in range between
DW_TAG_lo_user and DW_TAG_hi_user in-
clusive are reserved for vendor specific tags. This
implies we cannot simply map DWARF2’s tags and at-
tributes to XML’s tags and attributes, respectively,
when defining DTD for DWARF2.

• No constraint on which entries have which subentries,
or which entries have which attributes.

DWARF2 entries form a tree structure, which re-
flects the syntax structure of source languages. For
example, an entryDW_TAG_lexical_scope has
a subentryDW_TAG_variable in Figure 1. Unlike
high-level programming languages, DWARF2 has no
rule on which entries have which subentries. In other
words, a DWARF2 entry can have 0 or more suben-
tries with any tags. This also holds for attributes.

There already exist some utilities to display the con-
tents of the DWARF2 sections ina.out . For example,
readelf in GNU binutils is very useful for us to under-
stand concrete DWARF2 debugging information, but, un-
fortunately, not for computers to process it, since:

• readelf ’s output is nottree-structured. For exam-
ple, entries in.debug_info logically form a tree-
structure, but they are represented as a linear sequence
of entries inreadelf ’s output, althoughreadelf ’s
output has enough information to reconstruct the orig-
inal tree structure.

• readelf ’s output ishalf-cooked. For example, map-
ping between source line numbers and addresses are
stored in.debug_line as a stream of bytes, which
is a program in a byte-coded language to produce the
mapping. This kind of encoding is required to reduce
the size of DWARF2 debugging information.

readelf emits an execution sequence of the
byte-coded program as the mapping informa-
tion. To obtain the mapping like (line 69, address
0x11930) from readelf outputs, we need to in-
terpret opcodes likeCopy (DW_LNS_COPY), which
means “produce a pair of (line, address) as line infor-
mation using the current values of the state-machine
registers”.

This observation led us to design fully-structured and
fully-cooked DWARF2-XML even if it makes the file sizes
of DWARF2-XML documents larger. See also Section 4.

a.out, *.o, *.a

common
formats

source-level
data integration

ANSI C
conforming
C programs

C programs
with compiler
extensions

C programs
with ambiguous
behaviors

analyze
(hard)

analyze
(easy)

binary-level
data integration

compile

common
formats

source files binary files

Figure 2. source- v.s. binary-level data inte-
gration

3. Binary-level data integration

In Section 2.1, we described the cost to implement prac-
tical source-level data integration for C is very high because
of compiler-specific extensions and ambiguous behaviors in
the C standards. Our idea to solve this problem is binary-
level data integration. Compilers like GCC emit binary code
that conforms to ABI1 standards. The emitted binary code
includes not only machine code, but also various informa-
tion (e.g., symbol information, line information, relocation
information, debugging information).

In this paper,binary-level data integrationrefers to pro-
viding common formats to such various kind of informa-
tion in binary files and to derived data from it. Figure 2
shows that binary-level data integration avoids the difficulty
of compiler extensions and ambiguous behaviors by analyz-
ing binary files, not source files.

The advantages of binary-level data integration are:

• High applicability.
Binary-level data integration can process pro-

grams in binary with compiler extensions (e.g.,
inline-assembly), with ambiguous behaviors, with-
out source code, and compiled from other languages,
as long as they conform to ABIs.

• More true-positives for low-level information.
Binary-level data integration provides platform-

dependent information such as function/variable ad-
dresses, sizes and offsets of structure members, stack
layouts. This kind of information is often impor-
tant in embedded software development, but not avail-
able in source-level data integration.

• Low development cost.
The cost of developing source-level data integration

is very high, since we need to develop (possibly full)
parser and analyzer from the scratch, or modify the
existing (possibly huge) compilers like GCC. On the
other hand, the cost of developing binary-level data in-
tegration is low, since we only have to decode binary

1 application binary interface

code to obtain symbol tables, relocation information,
debugging information and so on.

• Few false-positives.
Binary information is based on compiler’s analy-

sis, so false-positives are much less than in source-
level partial-parsing method. (Of course, binary-level
data integration suffers from more false-negatives in
exchange for few false positives.)

• Information to cope with C preprocessor problem.
As shown in [10], it is very difficult for software

tools to cope with the C macro preprocessor, Cpp.
DWARF2, for example, provides the following infor-
mation that can help to solve the Cpp problem:

– Information on#ifdef and #define macro
definitions in .debug_macinfo . (But no in-
formation on where the macros are used.)

– Precise mappings each of which maps a
DWARF2 entry to the line number of unpro-
cessed C source code.

On the other hand, binary-level data integration has the
following disadvantages:

• More false-negatives.
For example, DWARF2 lacks the information about

expressions and statements in source code. This im-
plies DWARF2 itself has no ability to output informa-
tion about expressions or statements.

• Platform, ABI or binary format dependency.
For example, binary-level data integrated tools for

ELF/DWARF2 on SPARC Solaris are not compatible
with those for PE on i386 Windows. It is often the case
that embedded software tightly depends on some plat-
form, so this problem does not matter in our opinion.

• Difficulty for automatic source code modification.
Generally, compiling is irreversible, so, for tools

only using binary-level data integration, it is difficult
to automatically modify source code.

Thus, binary-level data integration seems to be quite at-
tractive, even though it has some drawbacks. As far as we
know, little attention has been given to binary-level data in-
tegration for CASE tools, so it is worth studying. This pa-
per gives a first step to examine the power of binary-level
data integration.

4. DWARF2-XML: a markup language for
DWARF2

In Section 2.3, we pointed out that DWARF2 entries
are loosely structured, and the outputs ofreadelf are
half-cooked and not tree-structured. Considering these is-
sues, we developed DWARF2-XML a markup language for
DWARF2, as a testbed of binary-level lightweight data in-
tegration. The entire DTD for DWARF2-XML is about 80
lines and found in [16]. DWARF2-XML currently supports
the following 7 sections,

.debug_abbrev , .debug_info , .debug_line ,

.debug_aranges , .debug_pubnames ,

.debug_frame , .debug_macinfo

since C does not use.debug_loc and GCC does not emit
.debug_str (strings are stored in.debug_info).

The design policies of DWARF2-XML are as follows.

• DWARF2-XML preserves as many logical structures
and links in DWARF2 as possible. Also DWARF2-
XML fully decompresses DWARF2 information, inter-
preting all opcodes likeDW_LNS_COPY. This solves
the deficiency ofreadelf ’s outputs.

• DWARF2-XML maps a DWARF2 tag to an XML at-
tribute value, not to an XML tag. For example, an en-
try of the form DW_TAG_foo is mapped to an XML
tag <tag name="DW_TAG_foo"> to allow us to
deal with vender-specific tag names without modify-
ing DTD. This also makes it natural to cope with the
problem of no constraints on which entries have which
subentries. DTD for DWARF2-XML simply defines a
tag includes any attributes and/or any tags as follows.

<!ELEMENT tag (attribute*, tag*)>

Figure 3 shows2 an example of.debug_info in
DWARF2-XML document for { int i; ...} ,
which means “This lexical block is compiled into the ad-
dress range between 67328 and 673563. A local variable
i of the type int is defined in the block, and allo-
cated at the offset-24 to the frame base register (%fp in
SPARC).int is signed and its size is 4 bytes.”

DWARF2 can represent all data types including user-
defined types, type modifiers likeconst andvolatile
and storage classes likeextern and static . The
data types are shared in DWARF2-XML using XML’s
ID/IDREF links to reduce the file size. For example, the
value ofDW_AT_type is a link toDW_TAG_base_type
with the ID value"id:161" .

Like other XML-based markup languages, DWARF2-
XML documents are bulkier than the original DWARF2
data. Table 1 shows the file or section sizes (in bytes)
of DWARF2 (.debug_*), DWARF2-XML, etc., where
hello1.c includes the stdio.h header file, but
hello2.c does not; x_debug is a debugger us-
ing DWARF2-XML (details are not described in this
paper);readelf+ is introduced in Section 5. From Ta-
ble 1, we can see DWARF2-XML documents become
15 times larger than the original DWARF2. In our opin-
ion, the file increase is acceptable in exchange for high
readability, flexibility, and low development cost.

Interestingly, the size increase is almost canceled by
compressing DWARF2-XML withgzip , which suggests
that general compression utilities likegzip may supersede
DWARF2-specific compression techniques.

2 For lack of space, some attributes are pruned, and all end tags are ab-
breviated as</> .

3 Decimals are used here since XPath does not support hexadecimals.

<section name=".debug_info">
· · ·
<tag name="DW_TAG_lexical_block" offset="id:27"> <!--block-->

<attribute name="DW_AT_low_pc" value="67328"/>
<attribute name="DW_AT_high_pc" value="67356"/>
· · ·
<tag name="DW_TAG_variable" offset="id:27"> <!--variable-->

<attribute name="DW_AT_name" value="i"/>
<attribute name="DW_AT_type" value_ref="id:161"> <!--IDREF-->
<attribute name="DW_AT_location">

<description>DW_OP_fbreg: -24</description></></></></>
· · ·
<tag name="DW_TAG_base_type" offset="id:161"> <!--type, ID-->

<attribute name="DW_AT_name" value="int"/>
<attribute name="DW_AT_byte_size" value="4"/>
<attribute name="DW_AT_encoding" value="5">

<description>signed</description></></></>

Figure 3. Example of .debug _info in DWARF2-XML document for { int i; ... }

source code a.out DWARF2
(.debug_*) DWARF2-XML gzip ped

DWARF2-XML
hello1.c 86 8,788 2,075 11,703 2,445
hello2.c 70 11,156 4,440 34,841 4.954
x_debug.c 28,923 111,324 83,674 1,333,456 86,518
readelf+.c 319,863 549,496 288,687 3,823,263 243,802

Table 1. File (or section) sizes in bytes of DWARF2, DWARF2-XML and others

a.out
*.o

DWARF2
-XML

(x_debug)

dxref rxref

bscg
readelf+

binary files

cross-referencers

static call-graph extractor

source-level debugger

converter from a.out
to DWARF2-XML

Figure 4. Overview of experimental imple-
mentation using DWARF2-XML

5. Experimental implementation of tools us-
ing DWARF2-XML

5.1. Overview

As mentioned in Section 1, we developed DWARF2-
XML as a testbed for the binary-level lightweight data in-
tegration technique. To show how useful DWARF2-XML
is, we experimentally implemented two cross-referencers
(called dxref and rxref), a static call graph extrac-
tor (called bscg), and a source-level debugger (called
x_debug) using DWARF2-XML. All of them are devel-
oped on Solaris 8, and the source code of them and sample
outputs are available in [16].

As shown in Figure 4, we developed five tools.

• readelf+ — translates froma.out or *.o to
DWARF2-XML. readelf+ is developed by modi-

fying GNU readelf (about 12,000 lines in C). The
patch is about 2,500 lines. It took about one man-week
to develop. Implementingreadelf+ was not techni-
cally difficult, but tedious since we had to thoroughly
know DWARF2 andreadelf.c .

• x_debug — is a source-level debugger using
DWARF2-XML as debugging information. We do not
explainx_debug any more for the lack of space.

• dxref — generates HTML files including cross-
reference links, extracted from DWARF2-XML. 2,200
lines in C. One man-week to develop.

• rxref — is a hybrid cross-referencer ofdxref
and GNU GLOBAL, developed to compensate
for dxref ’s weakness. 1,200 lines in Ruby. Two
man-weeks to develop.

• bscg — is a static call graph extractor using
DWARF2-XML and a result of disassembling. 1,400
lines in C. One man-week to develop.

In the experiment, we had a good result; it took only 1
through 2 man-weeks to implement each tool. Our tools are
almost practical both in execution speed and in function-
ality; especially they have less false-positives than the ex-
isting tools. The toolrxref is a hybrid ofdxref and
GNU GLOBAL [29], and the success ofrxref shows
that our approach has good flexibility. So far as the experi-
ment is concerned, binary-level lightweight integration us-

% gcc -g3 -gdwarf-2 test.c
% readelf+ -X a.out > test.xml
% dxref test.xml
% w3m HTML/dxref_top.html

Figure 5. Example of dxref execution steps

Figure 6. Screen snapshot of dxref output

ing DWARF2 is an effective technique to cut the cost of de-
veloping program understanding tools.

5.2. Cross-referencers:dxref , rxref

dxref uses only DWARF2-XML on purpose to
know the ability or limitations of DWARF2-XML, while
rxref uses both DWARF2-XML and the outputs of GNU
GLOBAL.

Figure 5 showsdxref ’s execution steps.readelf+
extracts DWARF2 into DWARF2-XML. Using DWARF2-
XML, dxref constructs cross reference information, for
example, from the data of “a local variablei is defined in

Figure 7. Screen snapshot of rxref output

methods (tool names) ap
pl

ic
ab

ili
ty

fa
ls

e
po

si
tiv

e

fa
ls

e
ne

ga
tiv

e

sc
al

ab
ili

ty

de
ve

lo
pm

en
tc

os
t

in
te

ro
pe

ra
bi

lit
y

source partial-parsing G B NB VG G B
source full-parsing B G VG NB B B
binary symbol table VG VG B G G B
debug info. (dxref) VG VG NB B G G
hybrid (rxref) VG G G B G G
Legend: VG=very good, G=good, NB=not bad, B=bad

Table 2. Characteristics of dxref , rxref and
the existing cross-referencers’ methods

the block of the address range between 67328 and 67356” in
Figure 3. Figure 6 is a screen snapshot that a Web browser
Opera displays HTML documents generated bydxref .

dxref has several good characteristics. For example,
dxref successfully processes C programs written using
GCC extensions likeasm (high applicability);dxref pro-
vides the information of function/variable addresses, stack
layouts and so on (more true-positives for low-level infor-
mation);dxref was developed in one man-week (low de-
velopment cost); the problem of C’s ambiguous behaviors
does not arise because of the use of DWARF2 emitted by
the compiler being used (few false-negatives);dxref pro-
vides the information4 of C preprocessor’s directives like
#include , #define and #undef (coping with Cpp
problem). Furthermore,dxref provides accurate identifier
lists categorized by name class, i.e., files, structures, unions,
typedefs, labels, enum tags, enum constants, functions, vari-
ables and macros. Thus, the advantages of binary-level data
integration given in Section 3 apply todxref . A qualita-
tive comparative table of cross-referencers’ methods from
our experience is summarized in Table 2.

Unfortunately, the disadvantages of binary-level also ap-
ply to dxref . Especially, DWARF2 lacks the information
of expressions and statements in C, which results in more
false-negatives. That is,dxref provides no links to nav-
igate, e.g., from a function use to its definition. To solve
this problem, we developed yet another cross-referencer
rxref . rxref is a hybrid ofdxref and GNU GLOBAL,
combining the HTML outputs of both tools. Figure 7 shows
a screen snapshot ofrxref . The lower right frame in Fig-
ure 7 is source code where cross-reference links are em-
bedded by GNU GLOBAL. Thus, the drawback ofdxref
is considerably solved inrxref .

Table 3 shows the execution speeds5 of dxref , rxref

4 dxref gives what macros are defined where, but not where they are
used, due to the limitation of DWARF2.debug_macinfo .

5 Commands and options used:readelf+ -X and dxref
--src2html for dxref , readelf+ -X andruby rxref.rb
-g for rxref , xci --xml and java cref for ACML, sdb4
and spie -l -t html for Sapid SPIE,cxref -xref-all
-html for Cxref,gtags andhtags for GNU GLOBAL, genxref
for LXR, cscope -b -q for cscope.

dxref rxref ACML
cross. ref.

Sapid
SPIE cxref GNU

GLOBAL LXR cscope
hello1.c 0.07+1.7 sec0.07+4.7 sec0.12+6.5 sec4.4+1.3 sec0.37 sec 0.42+2.0 sec0.49 sec 1.8 sec
hello2.c 0.08+2.3 sec0.08+6.0 sec0.20+11 sec 5.9+1.4 sec0.41 sec 0.74+2.3 sec0.48 sec 1.9 sec
x_debug.c 0.4+12 sec 0.4+39 sec N/A N/A 1.8 sec 0.91+3.8 sec 1.3 sec 2.7 sec
readelf+.c 0.7+34 sec 0.7+120 sec N/A N/A 2.6 sec 1.6+9.1 sec 6.9 sec 2.3 sec

Table 3. Execution speeds of dxref , rxref and the existing cross referencers (elapsed time)

1234:call 5678 main:call fact

digraph G {
 main->fact;
 fact->fact;}

main fact

usage

(1) extract call instrunc-
 tions by disassembling

(2) convert addresses to
 symbols using DWARF2

(3) trim call graph
 according to options

(4) output graph topology
 in DOT of Graphviz

Figure 8. How bscg extracts call graphs

Figure 9. Example output of bscg (1)

and some existing cross referencers on Solaris 8 (333MHz
UltraSPARC-IIi with 128MB RAM). While dxref and
rxref are slower than cxref, GNU GLOBAL, LXR and
cscope, our toolsdxref andrxref run fast, in our opin-
ion, enough for practical use, which is achieved by optimiz-
ing XPath usages indxref , and by using SAX, not DOM,
in rxref . Table 3 also shows the drawback of source-level
data integration; Sapid SPIE [13] and ACML [12] failed to
processx_debug.c and readelf+.c 6．This supports
high applicability of binary-level data integration.

5.3. Call graph extractor: bscg

Call graph extractors are tools to provide graph-based vi-
sual representation for function calls.bscg we developed is
a static call-graph extractor using DWARF2-XML. Figure 8
shows howbscg extracts call graphs from binary files.

Figure 9 shows an example output ofbscg , which indi-
cates the functionmain calls print_usage and fact ,

6 Sapid has some ability to skip GCC extentions by editing
Sapid.conf , but we just used the default settings.

options descriptions
--nolocal exclude local (i.e. file scope) functions
--only files include functions in the specified files
--ignore funcs exclude the specified functions
--callers funcs include callers offuncsrecursively
--callees funcs include callees offuncsrecursively
--depth num max. recursion depth (all for infinite)

Table 4. bscg ’s graph trimming options

and fact calls fact itself and inlined functiontimes ;
main and fact are global whileprint_usage and
times are local (i.e., declared withstatic).

Call graphs are likely to be very huge and “spaghet-
tied” in practical use, making the call graphs unread-
able and useless. To solve this issue,bscg has the
graph trimming options in Table 4. These options al-
low us to focus on some specific parts of the graph. For
example, Figure 10 shows abscg ’s output for bash-
2.03 with the option “--depth all --callers
reset_mail_timer ”, which means “generate a call
graph including reset_mail_timer and its (transitive) callers
only”. The option reduced the number of functions dis-
played in the output from 900 to 13.

Like dxref andrxref , the advantages of binary-level
data integration (Section 3) also apply tobscg . Rather
than discussing these issues again, we discuss more detailed
characteristics ofbscg . A qualitative comparative table of
cross-referencers’ methods from our experience is summa-
rized in Table 5. For example,bscg has the following pos-
itive characteristics:

• bscg can identify inlined functions since DWARF2
has the inlining information, while other binary-level
tools cannot due to the deletion of call instructions.

• bscg can extract a function call from inline assem-
bly code likeasm ("call fact"); , while other
source-level tools cannot.

• bscg can exclude library functions (e.g.,printf),
system calls (e.g.,open) and functions in runtime sys-
tem (e.g.,_start , _fini), while other tools cannot.

Unfortunately,bscg has several drawbacks: no support
for macro calls, signals, function pointers and optimization.

Table 6 shows the execution speeds8 of bscg and some

8 Commands and options used:readelf+ -X and bscg for
bscg ; genfull -g cobjdump for CodeViz(cobjdump); the
diff. of patchedgcc and normalgcc , and genfull for Code-
Viz(cdepn);cflow for Cflow; the diff. of gcc -pg andgcc , and
gprof-callgraph.pl for gprof-callgraph.pl .

Figure 10. Example output of bscg (2)

tool names methods m
ac

ro
fu

nc
tio

ns
si

gn
al

s

#
ifd

e
f

in
lin

e
fu

nc
tio

ns

lib
ra

ry
fu

nc
tio

ns

se
le

ct
in

g
su

bg
ra

ph
s

a
sm fu
nc

tio
n

po
in

te
rs

fa
ls

e
po

si
tiv

e

op
tim

iz
at

io
n

co
m

pi
la

tio
n

ex
ec

ut
io

n

Cflow source-level/partial parsingB B G NB NB B B B B G NR NR
CodeViz(cdepn) extending compilers B B G B NB B B NB G G R NR
CodeViz(cobjdump) binary symbol table B B G B B B G NB G B R NR
gprof-callgraph.pl profiler B B G B B B G G G B R R
bscg DWARF2 debug info. B B G G G G G NB G B R NR
Legend: G=good, NB=not bad, B=bad, R=required, NR=not required

Table 5. Characteristics of bscg and the existing call graph extractors

call graph extractors on Solaris 8 (333MHz UltraSPARC-
IIi with 128MB RAM). bscg runs fast enough for practi-
cal use except the case of bash-2.03.bscg has a problem
in scalability, sincebscg constructs a DOM tree to pro-
cess DWARF2-XML, which consumes quite much mem-
ory. Actually, on machine with enough memory (Sun Blade
150, UltraSPARC-IIe 550 MHz, 640MB RAM),bscg pro-
cessed bash-2.03 only in 25 seconds. Clearly, in use of
DOM, there is a tradeoff between much memory consump-
tion and low development cost.

6. Related works

• As far as we know, all the existing cross-referencers
and call graph extractors do not utilize debugging in-
formation, while this paper does. [8] told a call graph
extractor xrefdb in the Field [27] accepts an executable
(compiled/linked with the debug switch), but xrefdb
uses only the executable symbol table to determine the
source files to be scanned. (I.e., xrefdb does not use de-
bugging information).

• There are several studies on XML-based source pro-
gram representation e.g., JavaML [9], GCC-XML [4],
Sapid [14, 13], ACML [17, 12]. They are allsource-

level in the sense that they extract data from source
code, while our approach extracts it from binary code.

• Clearly, Purify [15]’s OCI(object code insertion) is a
binary-leveltechnique, but it focuses on the modifica-
tion of text code, rather than utilizing debugging infor-
mation to lower CASE tools.

7. Summary

In this paper, we introduced a novel technique for de-
veloping program-understanding tools for embedded soft-
ware, based on binary-level lightweight data integration.
To verify this idea, we first proposed a new markup lan-
guage for DWARF2 debugging information, and then, us-
ing the technique, we experimentally developed two cross-
referencers (calleddxref andrxref) and a call graph ex-
tractor (calledbscg) for C. So far as the experiment is con-
cerned, we had a good result.

Of course, the result of this paper is preliminary, and not
enough to verify the effectiveness of our approach. we need
more research and experiment. Our future works include:

• To apply the technique to other lower CASE tools like
memory profilers, test coverage tools, and so on.

lines in C bscg CodeViz
(cobjdump)

CodeViz
(cdepn) Cflow gprof-

callgraph.pl
hello1.c 6 0.07+0.10 sec 0.80 sec 0.02+0.67 sec0.20 sec 0.25+0.63 sec
hello2.c 6 0.80+0.16 sec 0.80 sec 0.02+0.64 sec0.24 sec 0.25+0.64 sec
x_debug.c 1,100 0.4+2.7 sec 1.2 sec 0.03+0.94 sec0.65 sec 0.37+0.97 sec
readelf+.c 12,000 0.7+8.1 sec 4.7 sec 0.16+7.7 sec 1.43 sec 0.33+0.84 sec
bash-2.03 44,000 4.8 sec+29min19sec7 13.3 sec 0.53+11.1 sec15.0 sec 1.08+2.2 sec
7 25 seconds if enough memory is available (Sun Blade 150, UltraSPARC-IIe 550MHz, 640MB RAM)

Table 6. Execution speeds of bscg and the existing call graph generators (elapsed time)

• To apply the technique to other binary data format, or
develop a new binary format suitable for lower CASE
tools, e.g., by extending DWARF2.

Acknowledgments

Prof. Steven Reiss kindly explained what the Field’s
call graph extractor extracts from executable files. Prof.
Shinichiro Yamamoto gave us a detailed explanation of
how Sapid deals with GCC extensions. This research was
partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid 14780202, 2002-2004.
We gratefully acknowledge their helps and contributions.

References

[1] A. M. Bishop, The Cxref Homepage,http://www.ge
danken.demon.co.uk/cxref

[2] AT&T Labs-Research, Graphviz – open source graph
drawing software,http://www.research.att.com
/sw/tools/graphviz/

[3] A. Baratloo, T. Tsai and N. Singh, Transparent Run-Time
Defense Against Stack Smashing Attacks, Proc. USENIX
Annual Tech. Conf., 2000.http://www.research.
avayalabs.com/project/libsafe/

[4] B. King, <GCC_XML description=”XML output for
GCC”>. http://public.kitware.com/GCC_XML/

[5] Cflow, ftp://ftp.netsw.org/softeng/lang/c/
tools/cflow/

[6] CSCOPE,http://cscope.sourceforge.net/
[7] CDIF CASE Data Interchange Format - Overview, EIA/IS-

106, Electronic Industries Association CDIF Technical Com-
mittee,http://www.eigroup.org/cdif/ , 1994.

[8] G. C. Murphy, D. Notkin, and E. S.-C. Lan, An Empirical
Study of Static Call Graph Extractors, 18th Int. Conf. on
Software Engineering (ICSE), pp.90-99, 1996.

[9] G. J. Badros. JavaML: A markup language for Java source
code. WWW9/Computer Networks, 33(1-6), pp.159-177,
2000. http://www.cs.washington.edu/homes/
gjb/JavaML/

[10] G. J. Badros and David Notkin. A Framework for
Preprocessor-Aware C Source Code Analyses, Software
Practice and Experience, 30(8), pp.907-924, 2000.

[11] A Class Design Metrics Collector Using JavaML and Its
Application (in Japanese), Hirohisa Aman, Kazunori Sakai,
Hiroyuki Yamada and Matu-Tarow Noda, IPSJ JOURNAL
43(12):pp.4005–4008, 2002.

[12] H. Kawashima and K. Gondow, Experience with ANSI
C Markup Language for cross-referencers, Proc. Domain-
Specific Language Minitrack, 36th Hawaii Int. Conf. on Sys-
tem Sciences (HICSS-36), 2003.

[13] H. Ohashi and S. Yamamoto, SPIE – Source Pro-
gram Information Explorer,http://www.sapid.org/
html2/mkSpec/SPIE-0.html (in Japanese), 2002.

[14] H. Yoshida, S. Yamamoto, K. Agusa, A Generic Fine-
grained Software Repository Using XML (in Japanese), IPSJ
JOURNAL 44(6):pp.1509-1516, 2003.

[15] IBM Corp., Rational Purify,http://www-306.ibm
.com/software/awdtools/purify/ .

[16] K. Gondow. Homepage for DWARF2-XML. Japan Ad-
vanced Institute of Science and Technology (JAIST).http:
//www.jaist.ac.jp/˜gondow/ dwarf2-xml/

[17] K. Gondow and H. Kawashima, Towards ANSI C Pro-
gram Slicing using XML, 2nd Int. Workshop on Language
Descriptions, Tools and Applications (LDTA02), Electronic
Notes in Theoretical Computer Science (ENTCS), 65(3),
2002.

[18] K. Kato and Y. Oyama, SoftwarePot: An Encapsulated
Transferable File System for Secure Software Circulation,
Software Security – Theories and Systems, LNCS 2609,
pp.112-132, 2003.

[19] LXR Cross Referencer, http://sourceforge.
net/projects/lxr

[20] M. Gorman, CodeViz – a call graph generation utility for
C/C++, http://www.csn.ul.ie/˜mel/projects
/codeviz/

[21] P. Reinholdtsen,http://www.student.uit.no/˜pere
/linux/gprof-callgraph/gprof-callgraph.pl

[22] Portable Common Tool Environment (PCTE) - Abstract
Specification, ECMA (European Computer Manufacturers
Association),ftp://ftp.ecma.ch/ecma-st/Ecma-
149.pdf , 1997.

[23] Programming Language C, ANSI X3.159-1989.
[24] Programming languages–C: ISO/IEC 9899:1990.
[25] Programming languages–C: ISO/IEC 9899:1999.
[26] Rationale for American National Standard for Information

Systems – Programming Language – C,http://www.
lysator.liu.se/c/rat/title.html

[27] S. P. Reiss. The Field Programming Environment: Friendly
Integrated Environment for Learning and Development.
Kluwer Academic Publishers, 1995.

[28] S. R. Tilley and D. B. Smith, Coming Attractions in Program
Understanding, Carnegie Mellon University, CMU/SEI-96-
TR-019, 1996.

[29] S. Yamaguchi, GNU GLOBAL – Source Code Tag Sys-
tem for C, C++, Java and Yacc.ftp://ftp.gnu.org
/gnu/global/global-4.1.tar.gz

[30] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Ed.).
World Wide Web Consortium.http://www.w3.org/
TR/REC-xml

[31] Tool Interface Standards, DWARF Debugging Information
Format Specification, Version 2.0, 1995.

[32] Wasserman, Anthony I., Tool Integration in Software En-
gineering Environments, in Software Engineering Environ-
ments: Proc. Int’l Workshop on Environments, F. Long, ed.,
Springer-Verlag, pp. 137-149, 1990.

