
Experience with ANSI C Markup Language
for a cross-referencer

Hayato Kawashima and Katsuhiko Gondow
Department of Information Science,

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai Tatsunokuchi Nomi Ishikawa, 923-1292, JAPAN

{hayato-k, gondow}@jaist.ac.jp

Abstract

The purpose of this paper is twofold: (1) to examine
the properties of our ANSI C Markup Language (ACML)
as a domain-specific language (DSL); and (2) to show that
ACML is useful as a DSL by implementing an ANSI C cross-
referencer using ACML.

We have introduced ACML as a DSL for developing
CASE tools. ACML is defined as a set of XML tags and
attributes, and describes ANSI C program’s syntax trees,
types, symbol tables, and so on. That is, ACML is the DSL
which plays the role of intermediate representation among
CASE tools. ACML-tagged documents are automatically
generated from ANSI C programs, and then used as input
of CASE tools.

ACML is self-descriptive and has CASE-tool specific in-
formation, which results in high productivity of CASE tools.
To show this, we experimentally implemented an ANSI C
cross-referencer based on ACML. In the implementation, we
had a good result; it took only 0.5 man-month.

1. Introduction

CASE (Computer-Aided Software Engineering) tools
can be quite useful to reduce the cost of software devel-
opment, but the cost of developing CASE tools itself is very
high. One reason is because internal data in CASE tools is
usually not available to other tools, although such data can
be shared among CASE tools. As a result, most CASE tools
have their own individual parsers and analyzers, resulting in
low maintainability. It is a key issue to find or develop some
technique to facilitate data sharing, or exchanging among
CASE tools in an elegant and cost-effective manner.

In order to cut the cost of developing CASE tools for
ANSI C programming language [17] (e.g., program slicers,
cross-referencers and test-case generators), we have intro-

duced ACML (ANSI C Markup Language) [6]. ACML is a
kind of domain-specific language (DSL) to describe a com-
mon data format specific to ANSI C in the domain of CASE
tools. That is, ACML is defined as a set of XML [1] tags
and attributes, which describe ANSI C program’s syntax
trees, types, symbol tables, and relationships among lan-
guage constructs.

A DSL is a programming language dedicated to a par-
ticular domain or problem. For example, Lex and Yacc are
used for lexers and parsers; VHDL for electronic hardware
description. Furthermore, even markup languages can also
be viewed as DSLs, because they can be good languages to
describe some data’s structures, relationships and semantics
specific to some particular domain, even though they are
likely to lack the language features like variables, control
statements, and/or procedures. In fact, HTML and LATEX
are widely recognized as DSLs [18][19][23].

The first purpose of this paper is to examine the proper-
ties of ACML as a DSL. ACML is a markup language, and
is considered as a DSL for the same reason described above.
ACML-tagged documents are automatically generated from
ANSI C programs, and then used as input of CASE tools.
ACML provides to programmers a way to easily obtain
information about ANSI C programs in a self-descriptive
manner, which is useful to develop CASE tools. To show
this, we already implemented Weiser’s slicer as a prelimi-
nary experiment in [6]. But the slicer only processes limited
ANSI C programs, and utilizes only the syntax structure in
ACML. Thus further experiment is required.

The second purpose of this paper is to show that ACML
is useful as a DSL by implementing an ANSI C cross-
referencer using ACML. A cross-referencer is a CASE tool
that lists all identifiers including variables, functions, la-
bels and type names in a given program, and allows pro-
grammers to relate the use of an identifier to its defini-
tion, and vice versa. An elaborate cross-referencer consid-
erably helps programmers to understand and maintain their

1

source programs. However, the existing implementations
like Cxref [14] and GNU GLOBAL [12] are still not good
enough, since their analysis is likely to be imprecise as a re-
sult of their focusing on execution speed. Furthermore, all
information in ACML is required to implement our cross-
referencer. The cross-referencer processes any ANSI C pro-
grams. Thus, in this experiment, the effectiveness of ACML
is examined more comprehensively. In the experiment, we
had a good result; it took only 0.5 man-month.

The rest of this paper is organized as follows. Section 2
gives a short overview of data integration for CASE tools
and the existing standards: CDIF and PCTE. Section 3 dis-
cusses the properties of our ACML as a DSL. Section 4 de-
scribes our XCI (Experimental ANSI C Interpreter), which
also works as a converter from ANSI C source code to
ACML-tagged documents. In Section 5, our preliminary
experiment of implementing an ANSI C cross-referencer is
given. In Section 6, we have discussion through the imple-
mentation of our cross-referencer. Section 7 describes re-
lated works. Finally, Section 8 gives conclusion and future
works.

2. Data integration in CASE tools

2.1. Problem

Generally the cost of developing CASE tools is very
high. One reason is because internal data in CASE tools is
usually not available to other tools, although such data can
be shared among CASE tools. In other words, such data is
closed, or even if it is open, it is not very useful. For ex-
ample, we cannot easily use internal data of GCC [8], such
as symbol data, syntax data, and type data, for other CASE
tools (Figure 1).

Source
 files

Object
 files

GCC

Tool A Tool B Tool C

Internal Data

Figure 1. GCC Internal Data

As a result, most CASE tools have their own individ-
ual parsers and analyzers, resulting in low maintainabil-
ity. From this point of view, CASE tools development re-

ally costs. Such data should be shared among CASE tools.
Thus, it is a key issue to find or develop some technology to
facilitate data sharing, or exchanging among CASE tools in
an elegant and cost-effective manner. To solve the issue, the
idea of using common data formats have already been intro-
duced in CDIF[5] and PCTE[3]. But, unfortunately, these
technologies have not come into wide use in CASE tools
yet. Thus, the quest for the ideal format is still continuing.

2.2. Data integration

The purpose to integrate CASE tools is to make CASE
tools more open, interoperable, and reusable. In [4], CASE
tool integration is categorized into data integration, con-
trol integration, presentation integration, process integration
and framework integration.

Data integration is our major interest, since our goal is to
cut the cost of developing CASE tools by introducing com-
mon data formats. It is not easy to find a good solution for
data integration. We can understand this fact by seeing that
even simple data integration like integrating newline char-
acters in text files (CRLF, CR, and LF) could be problem-
atic. For example, JDK1.2 has several bug fixes related to
CRLF. Things are even worse for CASE tools, because:

• There are various software products like specification
diagrams, design documents, programs, memoranda,
manuals, test data, and so on.

• For a product, there are many formats for the product.
For example, there are many programming languages,
which have their own syntax (i.e., formats).

• For a format of some product, there are many tools
for it. For example, there are many CASE tools for
ANSI C programs like compilers, debuggers, program
slicers, and cross-referencers.

• There are complex relationships among products men-
tioned above.

Therefore, it is not quite trivial to determine the proper
level of abstraction or granularity of the common represen-
tation for various kinds of products.

Another problem is pointed out in [22]. Data integration
assumes that the connected CASE tools share information.
This typically involves the development of a database or
repository to store the information shared among the tools.
This can be a disadvantage of data integration, since such
a repository is likely to be a quite large and complicated
database system. Also, such environments tend to be closed
rather than open, both because any new tool is needed to in-
tegrate with the database system and because the database
itself tends to be designed to operate with a particular lan-
guage.

2

Our idea is that we can avoid these problems for data
integration by supporting only one programming language
(i.e., ANSI C) and using XML, which relieves us from de-
veloping a complicated repository. When it comes to using
XML, it is appropriate to restrict a target language to only
one, since it is too complicated and ambitious to represent
some programming languages on only a DTD.

2.3. The existing data integration technologies

In this section, we briefly outline CDIF and PCTE from
the existing data integration technologies. These technolo-
gies contributed to the progress of data integration, but they
have not been widely used in CASE tool development yet.

• CDIF : CASE Data Interchange Format.

CDIF is not a specification of CASE tools or reposito-
ries, but a standard format to be applied to data inter-
change among CASE tools.

CDIF provides a clear separation between the seman-
tics of data and its presentation. This distinction allows
programmers to easily understand the underlying se-
mantics, since all presentation information is removed
from the semantics. CDIF is directed to the upstream
part of software development. This is why we use
XML, not CDIF to define our ACML. The expressive
power of CDIF and XML is under research. For exam-
ple, there is an experiment which converts CDIF into
XML [15].

• PCTE : Portable Common Tool Environments.

PCTE is a standard of open software repositories;
PCTE is produced commercially, and standardized by
ISO/IEC and ECMA (European Computer Manufac-
turers Association) in 1995. As a part of the environ-
ment supporting software development, PCTE offers
a platform-independent interface for the set of data-
handling functions. The important concepts are ob-
jects, links, attributes and schemata, which construct
the entity relationship model. PCTE provides coarse-
grained CASE data integration through file-level ob-
jects. We took a fine-grained approach to define
ACML, so we did not use PCTE.

3. DSL, ACML and, ACML as a DSL

In this section, after a brief overview of DSLs and ACML
is given, we discuss the properties of ACML as a DSL.
Also, we discuss that XML can be a good tool to implement
DSLs.

3.1. DSL: Domain Specific Language

A domain-specific language (DSL) is a programming
language dedicated to a particular domain or problem. Usu-
ally, DSLs are smaller and easier than general-purpose lan-
guages (GPLs) in exchange for their limited domain. For
example, Lex and Yacc are used for lexers and parsers;
SQL for handling relational databases; VHDL for electronic
hardware description [18].

Furthermore, even markup languages can also be viewed
as DSLs, because they can be good languages to describe
data structures, relationships and semantics specific to some
particular domain, even though they are likely to lack
the language constructs like variables, control statements,
and/or procedures. In fact, HTML and LATEX are widely
recognized as DSLs [18][19][23]. Generally, software de-
velopment with DSLs primarily aims at achieving faster and
more productive development. Even if a programmer is not
skilled, he or she can write more concise and higher level
programs in less time, since the language constructs of the
DSL are simple due to the focus on a specific domain [19].

Unfortunately, it is difficult to design and implement a
good DSL. There are many issues to be considered on de-
signing DSLs (e.g., listed in [20]). In this paper, we list two
issues, which are discussed later in Section 6.1 and 6.2.

3.2. ACML: ANSI C Markup Language

ACML is an ANSI C Markup Language that we have de-
veloped. The entire DTD for ACML is 400 lines and found
on the XCI Homepage [7]. An ACML-tagged document
has information of the abstract syntax tree and the static
semantics like types, symbols, control flows and relation-
ships between declarations and references. ACML provides
a concise way to decorate the information as following. See
[6] for details.

• Syntax structures are represented as nesting of XML
tags.

• Types and relationships are represented using
ID/IDREF links.

• Symbols are represented as a sequence of <symbol>
elements.

ACML is intended to be useful for CASE tools that stat-
ically analyze programs like static slicers, cross-referencers
and static test-case generators. Actually, we found ACML is
useful in an experimental implementation of Weiser’s slicer
[6].

We took a fine-grained approach for ACML; not only
functions and statements, but also all language constructs
including literals and variables are tagged with ACML. This
approach is necessary to CASE tools for downstream part

3

of software development (e.g., slicer and cross-referencer),
since they require syntactical information in detail, although
ACML-tagged code is two orders of magnitude bulkier than
the source program [6].

3.3. ACML as a DSL

In this section, we discuss the properties of ACML as a
DSL.

The domain of ACML is ANSI C programs. ACML aims
at reducing the cost of developing CASE tools primarily for
ANSI C programs. ACML is a markup language to dec-
orate ANSI C programs with the information of the syntax
and static semantics. Thus, ACML is inherently declarative.
Like most markup languages, ACML does not have the lan-
guage constructs for variables, control statements, and pro-
cedures, which are required to describe some computation
or behavior, not to describe some property or semantics of
data. This is because ACML is a DSL to describe a com-
mon data format specific to ANSI C for CASE tools devel-
opment.

ACML-tagged documents are automatically generated
from the existing ANSI C programs by XCI [7], and then
used as input of CASE tools. That is, ACML is the DSL
which plays the role of intermediate representation among
CASE tools. From this point of view, PostScript and RTL
(Register Transfer Language) can be categorized into the
same type of DSL as ACML. Here we call them ‘DSLs to
read’, each of which usually require a DSL generator, such
as XCI. On the other hand, ‘DSL to write’ is what program-
mers directly write. Thus, we consider intermediate repre-
sentation a part of the DSL (i.e., DSL to read).

Figure 2 shows this difference: (1) in DSL to write, pro-
grammers write programs in the DSL, and then a DSL pro-
cessor (typically a compiler) processes the programs to exe-
cute, (2) in DSL to read, DSL codes are generated or trans-
lated by the DSL processor (e.g., XCI for ACML), then pro-
grammers read the codes or other tools read the codes as
input to further process.

Generally, the advantages of the DSL approach to soft-
ware development is higher programmer productivity be-
cause programs written in a DSL tend to be more concise,
quicker to write and maintain [23]. Also representations in
a DSL can translate complicated descriptions of data struc-
tures into more concise and simpler ones, in order to read
and understand.

Therefore, by attaching importance to reading, ACML
helps programmers to understand programs better in less
time, or to develop other tools in less costs. While devel-
oping a CASE tool, programmers of the CASE tool read,
rather than write, ACML-tagged documents. ACML is self-
descriptive and has CASE-tool specific information in de-
tail, which results in high productivity of CASE tools.

DSL to write

DSL to read

language
processor

DSL
program

write

execute

DSL
program

read

programmer

other
tools

language
processor

generate
or translate

programmer

Figure 2. DSLs to write v.s. DSLs to read

In addition to CASE tool development, DSLs to read are
attractive, for example, in the following situations.

• More easily understanding and utilizing binary formats
like ELF format.

Not a few people think that ELF format is so difficult
that only hackers can understand ELF format, but that
is not the case. Data in ELF format is essentially a sim-
ple sequence or collection of the information of ma-
chine code, symbols, relocation, line numbers, strings
and so on. Therefore, if we develop a well-designed
DSL to read ELF format (e.g., using XML), the DSL
would greatly help us to understand and utilize ELF
format.

GNU BFD (Binary Format Descriptor) provides a
common view for different executable formats like
ELF, COFF, and PE, and allows us to deal with them
more easily to some extent. However, format-specific
sections like .debug in ELF are not supported in
GNU BFD. Thus, GNU BFD is not good enough.

• Better program understanding.

Comments, i.e., informal explanations in natural lan-
guages embedded in programs, are widely used in

4

practical programming to make the programs easier to
understandable. But comments are often ambiguous,
not correct, and not machine-processable. Thus, for-
mal annotations are required for better program un-
derstanding. For example, if all identifiers are an-
notated with their type information in a formal man-
ner, it would help programmers to maintain the pro-
grams. It is natural to define such annotations as a DSL
to read, since annotations become formal, machine-
processable, and possibly automatically generatable.

ACML can tag any ANSI C programs, though
ANSI C preprocessing comments and directives like
#include or #define are not marked up, that
is, ACML ignores comments, since all programs are
marked up with ACML after they are preprocessed.
This issue is one of our future works.

4. XCI : Experimental C Interpreter

We have developed XCI (Experimental C Inter-
preter) [7], which converts any ANSI C programs into
ACML-tagged documents. ACML code generation by XCI
is essential for ACML, as mentioned in Section 3.3.

XCI also works as an ANSI C interpreter. Figure 3 shows
that ANSI C programs are translated into ACML-tagged
documents or interpreted. Currently, we do not use the
function of interpreter in XCI, but it will be utilized when
ACML incorporates dynamic semantics (e.g., for dynamic
slicers). This is one of our future works.

4.1. The previous experiment: implementing
Weiser’s slicer

To show how useful ACML is for program slicing, we
implemented Weiser’s static program slicer without proce-
dure calls [9] as a preliminary experiment [6]. Weiser’s
slicer is a simple but good example, since it uses an im-
portant technique common to all slicers, that is, tracing data
and control flow dependences in a given program.

We experimentally implemented in Java Weiser’s slicer.
To obtain and process abstract syntax trees neatly, we used
DOM [10] (Figure 4). Implementation was most straight-
forwardly done. It took only 0.5 man-month to implement
Weiser’s slicer resulting in 2000 lines Java code. By using
ACML and XCI, we did not have to reimplement ANSI C
parser and static analyzer.

Since the slicer only processes limited ANSI C pro-
grams, and utilizes only the syntax structure in ACML, fur-
ther experimentation is required.

ANSI C
 source files

ASTs, static info.

the option
--xml

stack

program
counter

interpreting

int
main()
{

<exp>
<sym>
 ...

ACML-tagged
documents

not
implemented

Figure 3. XCI overview

5. Cross-referencer based on ACML

We have introduced ACML as a DSL. In this section,
to show that ACML is useful as a DSL, we experimentally
implement an ANSI C cross-referencer using ACML.

5.1. What is a cross-referencer?

Generally, cross-referencers provide a means for relating
the use of a name to its definition [22]. A cross-referencer
we particularly aim at, is a CASE tool that lists all identifiers
including variables, functions, labels and type names in a

ANSI C
program slice

Step 1: ACML
Step 2:

translator
Step 3:

our slicer

conventional slicers

XML-tagged
ANSI C program

augmented with AST, types,
symbol tables, cross-references.

Figure 4. Weiser’s program slicer based on
ACML

5

given program, and allows programmers to relate the use of
an identifier to its definition, and vice versa.

An elaborate cross-referencer considerably helps pro-
grammers to understand and maintain their source pro-
grams. However, the existing implementations like Cxref
[14] and GNU GLOBAL [12] (Section 7) are still not good
enough, since their analyses are likely to be imprecise or
less informative as a result of their focusing on execution
speed.

5.2. Why we implement a cross-referencer using
ACML?

The purpose of this experiment is to show that ACML
is useful as a DSL by implementing an ANSI C cross-
referencer using ACML. A cross-referencer is an appro-
priate example to measure the effectiveness of ACML and
XCI, because:

• There are several ANSI C cross-referencers widely
used, e.g., Cxref and GNU GLOBAL. We can com-
pare our cross-referencer with them for evaluation.

• It requires all information in ACML to implement a
cross-referencer, unlike Weiser’s slicer. This means
the effectiveness of ACML is examined more compre-
hensively.

• Less restriction on ANSI C programs is required to im-
plement a cross-referencer than to implement a pro-
gram slicer. Actually, our cross-referencer accepts any
ANSI C program, except that it cannot deal with refer-
ences to other files (i.e., no linkage among files).

5.3. Function of our cross-referencer

Our cross-referencer translates a given ANSI C pro-
gram via a ACML-tagged document to 13 HTML files,
where identifiers are color-highlighted and cross-references
are described as HTML hyperlinks. Figure 5 is a screen
snapshot of the result that the cross-referencer processed
global.c in GNU GLOBAL [13].

In the cross-referencer, all identifiers (functions, vari-
ables, tags, fields, and labels), typedef names, and enum
constants are correctly related to their definitions, by ex-
tracting information about their types, name spaces and
scopes. On the other hand, Cxref cannot deal with name
spaces in some cases. For example, assume the following
program, which is legal in ANSI C.

int main ()
{

typedef int foo;
foo: goto foo;

}

Our cross-referencer correctly distinguishes a typedef
name foo and a label foo, but Cxref version 1.5d does
not distinguish them and reports a parse error.

5.4. Results

We successfully implemented the cross-referencer as
XSLT stylesheets in 2000 lines, which took only 0.5 man-
month. We can implement the cross-referencer using DOM
instead of XSLT, but we did not, because one of our pur-
poses is to examine the expressive power of XSLT for
ACML.

We found that XSLT is very useful to concisely describe
the cross-referencer, but its execution speed is very slow.
We measured the execution time of our cross-referencer,
Cxref and GNU GLOBAL, which is listed in Table 1. Pos-
sible reasons are as follows, although the cause of slow ex-
ecution is still under investigation.

• ACML-tagged documents are repeatedly scanned by
13 XSLT stylesheets, since one XSLT stylesheet can
produce only one file. Moreover, there is no way
to store intermediate results in XSLT, which can be
shared among similar processing, but not shared.

• Naively described XSLT stylesheets are concise, but
suffer from slow execution, since the same XML tags
are repeatedly scanned by different XSLT templates.
Moreover, XSLT has no set or list operations, which
are convenient to store collected intermediate results.

• Java I/O is slow. And/or XT is slow since it is a refer-
ence implementation.

6. Discussion

6.1. XML as a good tool for DSLs

ACML is defined as a set of XML tags and attributes. In
our experience, XML reduces the cost of developing DSL
processors. In this section, we discuss the advantages of
using XML for developing DSL processors.

Even if a well-designed DSL is made, implementing the
DSL is often difficult and costly [19]. For example, it is
difficult for “domain developers” to create a DSL compiler
which translate from the DSL to a target machine or GPL
without higher skills in compiler technologies. XML tech-
nologies make it easier and of less cost to implement the
DSL. For example, if we utilize XML parsers or XSLT pro-
cessors, we do not have to develop a parser or translator for
the DSL from the scratch. Of course, XML is not a sil-
ver bullet. It is still difficult and costly to develop the DSL’s

6

Figure 5. Screen snapshot of our cross-referencer

essential parts like semantic analysis and efficient optimiza-
tion.

We have developed two tools based on XML: Weiser’s
slicer (Section 4.1) and cross-referencer (Section 5).
Through the development of them, we strongly feel that
XML technologies cut the cost of developing DSL proces-
sors. On the other hand, we implemented XCI in ANSI C
without utilizing any XML technologies, which was time-
consuming and error-prone work. To summarize, XML can
be an effective tool for developing DSL processors, since
XML has the following positive characteristics.

• XML’s DTD provides notations that are rich and con-
cise enough to define the DSL syntax. Furthermore, it
promotes data integration for various DSL processors.

• Various XML tools like XML parsers, XSLT and
DOM are available to flexibly process XML-based
DSL programs. Their specifications are open and stan-
dardized.

• XML parsers can check if a given XML-based DSL
program is, through XML validation check, syntacti-
cally correct or not.

• The syntax and semantics of XML-based DSLs are
easy to understand, since XML is self-descriptive.

• XML has both advantages of plain text and structured
data. This means that it is possible to use traditional

text processing tools like sed, grep and perl for
simple processing of XML-based DSL programs.

6.2. Designing DTD for ACML

As mentioned in Section 3.1, it is difficult to design
DSLs well. That is the case for XML. XML is not a silver
bullet for designing a good DSL. This section summarizes
what is difficult in designing a DTD for ACML [6].

• Determining the proper level of abstraction or granu-
larity of information in ANSI C programs.

This highly depends on how to use ACML. We would
like to use ACML primarily for program slicers and
cross-referencers, most of which require the syntac-
tic details. So, we took a fine-grained approach for
ACML; not only functions and statements, but also all
language constructs including literals and variables are
tagged with ACML.

On the other hand, JavaML (Java Markup Language)
[2] took a coarse-grained approach to model Java inde-
pendently of the Java specific syntax, which could inte-
grate various object-oriented programming languages
into a uniform format.

• Size/time trade-offs in handling derived data.

7

Table 1. Execution time1(elapsed time in seconds)
size our cross-ref.2 Cxref3 GNU GLOBAL4

hello1.c5 77B 0.09+1.84 sec. 0.09 sec. 0.39+2.50 sec.
hello2.c6 68B 0.20+5.92 sec. 0.11 sec. 0.41+2.62 sec.
global.c7 28KB 0.67+28.91 sec. 0.20 sec. 0.52+2.73 sec.
type.c8 124KB 2.06+64.03 sec. 0.29 sec. 1.09+4.43 sec.
1measured on a 800MHz Mobile Pentium 3 with 256MB SDRAM, and

running Windows 2000, 2exec. time of XCI and our cross-referencer,
3exec. time of ‘cxref -xref-all -html’, 4exec. time of ‘gtags’ and ‘htags’,
5without #include <stdio.h>, 6with #include <stdio.h>, 7in GLOBAL, 8in XCI,

A program slice is a typical derived data from the orig-
inal program. It often costs much time to compute pro-
gram slices, so the result of slicing should be stored as
XML documents. However, derived data that are eas-
ily recomputed (e.g., the length of identifiers) would
not be worth storing. XML documents are likely to
be large because of many tags and attributes, so the
file size also matters. Obviously, there is a trade-off
between the file size and the computation time in han-
dling derived data.

• Determining what kinds of information ACML should
provide.

The current ACML has information about the syntax
structure and static semantics like types, symbols, and
relationships among language constructs. The follow-
ing are other candidates that current ACML does not
provide.

– Dynamic semantics. (e.g., history of variable val-
ues)

– Human activities. (e.g., logs for debugging and
testing)

– Lexical information. (e.g., indentation, brace
placement, comments)

– Correspondence of source code to design dia-
grams (e.g., UML) or specification.

• Designing canonical notations for different codes that
have the same meaning.

Some code fragments in ANSI C have different
ASTs, but are semantically equivalent. For example,
unsigned long and int long unsigned are
equivalent types. Is it better to introduce a unique
(canonical) XML notation for them and how? In this
case, we decided to introduce two notations:

– Non-canonical notation to distinguish the differ-
ence of coding styles.

– Canonical notation for checking type equiva-
lence.

6.3. Possible improvements for our cross-referencer

In this implementation, to create hyperlinks, we do not
recompute, but simply trace ID/IDREF links among el-
ements in ACML. Thus, our cross-referencer still leaves
room for improvements. Possible improvements are as fol-
lows.

• To link each definition to its use (i.e., reverse links) as
GNU GLOBAL does.

• To provide a table of each definition and use as
Sapid [16]’s SPIE does.

• To cope with C preprocessing directive like
#include and #define. GNU GLOBAL,
Cxref, and Sapid [16]’s SPIE cope with this problem
in some extent.

• To link each definition and use of external objects
across files.

• To produce outputs in various formats.

• To allow users to customize what kind of cross-
references are produced and how.

7. Related works

• JavaML [2] and GCC-XML [21]
JavaML and GCC-XML are both markup languages
for programming languages. Unlike ACML, they are
so coarse-grained that it is not suitable for developing
cross-referencers.

• Sapid [16]
For a given ANSI C source code, Sapid stores informa-
tion of the syntactic structure and static semantics into

8

the file in the format called I-model. Using I-model,
Sapid offers a great cross-referencer called SPIE. But
SPIE is not based on XML. Sapid have been developed
to a high degree of perfection, although it is too large
scale.

• GNU GLOBAL [12]
GNU GLOBAL is a cross-referencer for C, C++, Yacc
and Java. Supporting multi-languages is achieved by
not parsing, and by focusing on only file and function
names. Thus, GNU GLOBAL cannot deal with name
spaces correctly. GNU GLOBAL is light-weight, so
GNU GLOBAL can process a large project containing
many subdirectories. GNU GLOBAL is customizable
with gtags.conf.

• Cxref [14]
Cxref is a cross-referencer for C, and produces various
kind of documents (in LATEX, HTML, RTF or SGML)
including cross-references. Cxref can handle not only
ANSI C, but also K&R and most popular GNU exten-
sions. Unlike GNU GLOBAL or Sapid’s SPIE, hyper-
links are not embedded in source code.

8. Conclusion and future works

In this paper, we have considered our ACML as a DSL,
and we have shown that ACML is useful in implementing
an ANSI C cross-referencer using ACML.

ACML is a DSL for developing CASE tools. ACML is
defined as a set of XML tags and attributes, and describes
ANSI C program’s syntax trees, types, symbol tables, and
so on. That is, ACML is the DSL which plays the role of
intermediate representation among CASE tools. From this
point of view, PostScript and RTL can be categorized into
the same type of DSL as ACML. We consider intermediate
representation a part of the DSL (i.e., DSL to read). ACML-
tagged documents are automatically generated from ANSI
C programs, and then used as input of CASE tools. This
process is supported by XCI and XML technologies. Thus,
while developing a CASE tool, programmers of the CASE
tool read, rather than write, ACML-tagged documents.

ACML is self-descriptive and has CASE-tool specific
information, which results in high productivity of CASE
tools. To show this, we experimentally implemented an
ANSI C cross-referencer using ACML. In the implemen-
tation, we had a good result; it took only 0.5 man-month.
Roughly speaking, we saved 2 months, since it took 2
months to develop an ANSI C parser and static analyzer for
XCI and we did not have to reimplement the ANSI C parser
and static semantics analyzer in implementing the program
slicer and the cross-referencer.

We will extend ACML to support a lot of kinds of infor-
mation. Especially, we have a plan to study the following:

• To elaborate our cross-referencer as mentioned in Sec-
tion 6.3.

• To feed back analyzed results (e.g., a program slice)
into ACML documents.

• To develop an XML-based C preprocessor to better
cope with the problem of C preprocessor.

References

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler. Extensible Markup Language (XML) 1.0 (Second
Edition). http://www.w3.org/TR//REC-xml.

[2] Greg J. Badros. JavaML: A markup language for
java source code. http://www.cs.washington.edu
/homes/gjb/JavaML.

[3] ECMA (European Computer Manufacturers Association).
Portable Common Tool Environment (PCTE) - Ab-
stract Specification, 1997. ftp://ftp.ecma.ch/ecma-st/Ecma-
149.pdf.

[4] ECMA and NIST. Reference Model for Frameworks of Soft-
ware Engineering Environments, Draft Edition 3 of Tech-
nical Report ECMA. TR/55 and NIST Special Publication
500-201, 1993.

[5] Electronic Industries Association CDIF Technical Commit-
tee. CDIF CASE Data Interchange Format - Overview,
EIA/IS-106, 1994. http://www.eigroup.org/cdif/.

[6] K.Gondow, H.Kawashima. Towards ANSI C Program Slic-
ing using XML, 2nd Int. Workshop on Language Descrip-
tions, Tools and Applications (LDTA’02).

[7] K.Gondow, H.Kawashima. XCI (Experimental
ANSI C interpreter) Homepage. Japan Advanced
Institute of Science and Technology (JAIST).
http://www.jaist.ac.jp/˜gondow/xci.

[8] GNU Project. GCC. Free Software Foundation.
http://gcc.gnu.org.

[9] M. Weiser. Program slicing. IEEE Transaction of Software
Engineering, SE-10(4):352-357, 1984.

[10] WWW Consortium (W3C). Document Object Model
(DOM). http://www.w3.org/DOM.

[11] WWW Consortium (W3C). XSL Transformations (XSLT)
Version 1.0. http://www.w3.org/TR/xslt.

[12] Tama Communications Corporation.
GNU GLOBAL source code tag system.
http://www.gnu.org/software/global/.

[13] Shigio Yamaguchi. GNU GLOBAL-Source
Code Tag System for C, C++, Java and
Yacc. ftp://ftp.gnu.org/gnu/global
/global-4.1.tar.gz.

9

[14] Andrew M. Bishop. The Cxref Homepage.
http://www.gedanken.demon.co.uk/cxref.

[15] Organization for the Advancement of Structured In-
formation Standards (OASIS). The XML Cover Pages.
http://xml.coverpages.org/xml.html.

[16] Fukuyasu Naoki, Yamamoto Shinichirou and Agusa
Kiyoshi. An evolution framework based on fine grained
repository. In Int. Workshop Principles of Software Evolu-
tion (IWPSE99) pages 43-47, 1999.

[17] B.W. Kernighan and D.M. Ritchie. The C programming Lan-
guage, 2nd Edition. Prentice Hall 1988.

[18] Diomidis Spinellis. Notable design patterns for domain spe-
cific languages. Journal of Systems and Software, 56(1):91-
99, February 2001.

[19] Scott Thibault, Renaud Marlet and Charles Consel. A Do-
main Specific Language for Video Device Drivers: from
Design to Implementation. Conference on Domain-Specific
Languages, 1997. USENIX Association.

[20] A. van Deursen and P. Klint. Little languages: Little mainte-
nance?. Journal of Software Maintenance, 10:75-92, 1998.

[21] Brad King. <GCC XML description=”XML output
for GCC”>. http://www.gccxml.org/HTML
/Index.html.

[22] Steven P. Reiss. Software Tools and Environments ACM
Computing Surveys, Vol. 28, No. 1, March 1996.

[23] Proc. Conf. on Domain-Specific Languages.
USENIX ;login: - DSL’97 Conference Summaries.
http://www.usenix.org/publications
/library/proceedings/dsl97/summaries/.

10

